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Polyketides are a structurally complex class of natural products
with therapeutic and agrochemical utility.1 Polyketide backbones
are generated by the repetitive decarboxylative condensation of
simple malonic acid derivatives by large multifunctional proteins
called polyketide synthases (PKSs). These modular enzymes can
be genetically modified to biosynthesize new “unnatural” natural
products.2 Notwithstanding the spectacular diversity of natural
and engineered polyketides, however, the potential structural
diversity of these molecules is seriously limited by the relatively
small number of building blocks that are naturally available for
polyketide biosynthesis within a cell. The ability to regioselec-
tively incorporate new, orthogonally reactive functional groups
into a polyketide scaffold has important implications for inves-
tigations into PKS mechanisms as well as for the medicinal
exploitation of polyketides.

Acyltransferase domains within PKSs are responsible for
selecting malonyl-CoA or its analogues for each round of
condensation. The two most common metabolically available
substrates are malonyl-CoA and methylmalonyl-CoA, although
biosynthetic pathways for a few otherR-carboxylated CoA
thioesters are also presumed to exist.3 A common biosynthetic
strategy for the formation of malonyl- or methylmalonyl-CoA
entails the carboxylation of acetyl- or propionyl-CoA, respectively.
However, harnessing this pathway to extend the in vivo pool of
R-carboxylated CoA thioesters would require an enzyme that
would carboxylate a wide variety of CoA-linked acids with
substituents directly at the reactive site. Recently, an alternative
pathway for malonyl-CoA biosynthesis has been discovered in
Rhizobium trifolii, in which exogenous malonate is imported via
a membrane-bound dicarboxylate transporter protein, and is
directly activated into malonyl-CoA by an ATP-dependent
malonyl-CoA synthetase.4 Heterologous expression of these two
genes in a recombinant strain ofStreptomyces coelicolorwhich
produces 6-deoxyerythronolide B has been shown to result in
dramatic improvements in macrolide productivity,5 indicating that
this precursor pathway can also utilize methylmalonate in addition
to malonate. We have therefore investigated the substrate specific-

ity of malonyl-CoA synthetase fromR. trifolii . As shown below,
the enzyme has remarkable tolerance for a variety of C-2
substituted malonic acids, making it an attractive catalyst for the
in vivo or in vitro formation of building blocks for polyketide
synthesis.

An important consideration in the exploitation of malonyl-CoA
synthetase is the availability of suitable 1,3-dicarboxylic acid
substrates. Although malonic acid derivatives can be accessed
by alkylation of a malonic acid diester by an electrophile and
subsequent base-catalyzed saponification,6 this synthetic protocol
requires tedious isolation procedures to recover high yields of
dicarboxylic acids. On the basis of our previous experience with
the synthesis ofN-acetyl cysteamine monothioesters of malonic
acid via ring-opening of Meldrum’s acid,7 we reasoned that in
addition to being an activating group, the isopropylidene ketal
could also be viewed as a protecting group that could be cleaved
to avoid aqueous product extractions. Ultimately, a mixture of
trifluoroacetic acid and water8 were chosen. Deprotection took
place in minutes at ambient temperature, and the reagents and
reaction byproducts were volatilized to leave the desired diacid
in almost quantitative yield.9 Several alkylated malonic acids were
obtained in this manner (Scheme 1).

Malonyl-CoA synthetase has previously been shown to convert
malonic acid and CoASH to malonyl-CoA with hydrolysis of ATP
to AMP and diphosphate via a malonyl-AMP intermediate.10

While malonic acid and methylmalonic acid were converted to
their corresponding monothioesters, acetate, propionate, or suc-
cinate were not. This suggested that the 1,3-diacid functionality
was crucial for enzymatic activity.

To probe the molecular recognition features of malonyl-CoA
synthetase, ethyl-, propyl-, allyl-, isopropyl-, dimethyl-, cyclo-
propyl-, cyclopropylmethylene-, cyclobutyl-, and benzyl-malonate
were either purchased or prepared, and assayed in the presence
of the enzyme, ATP, and CoASH as described previously.11,12
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Scheme 1.Synthesis of Malonic Acid Derivatives
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Surprisingly, the enzyme converted all these diacids into their
corresponding monothioesters (Table 1). Moreover, except for
benzylmalonate, in all cases the bimolecular rate constants for
product formation were greater than 1% that for the natural
substrate, malonate. As a point of reference, thekcat andKM for
malonate are 19( 0.3 s-1 and 208( 6 µM, respectively, whereas
the kcat for a typical PKS is in the range of 1 min-1. Therefore,
rate constants equivalent to 1% that for the natural substrate should
be adequate to ensure nonlimiting generation of a desired substrate
in vivo.

The above results suggest that malonyl-CoA synthetase has
broad tolerance toward unnatural diacid substrates, especially
those with hydrocarbon side chains. Moreover, the enzyme does
not appear to have a fixed angle requirement for the two
carboxylate functionalities, as both cyclobutyl dicarboxylic acid
and cyclopropyl dicarboxylic acid were turned over. Most
interestingly, the enzyme can handle substrates such as allylma-
lonate and cyclopropylmethylenemalonate which, if incorporated
into polyketide backbones, could provide functional handles for
regioselective modifications.

As mentioned above, acyltransferase domains in PKS modules
are the principal determinants of extender unit selectivity. These
domains can strongly discriminate against alternative extender
units available in a cell.13 To test whether PKS modules might
be able to process these unusual extender units, methylmalonyl-
CoA, ethylmalonyl-CoA, and propylmalonyl-CoA were synthe-
sized using malonyl-CoA synthetase and assayed against the
terminal module of the 6-deoxyerythronolide B synthase using
(2S,3R)-2-methyl-3-hydroxy-pentanoyl-S-N-acetylcysteamine as
the source of primer units.14 Mass spectrometric analysis of
overnight incubations of each reaction mixture revealed the
expected triketide lactone product.15 This assay could not be used
for accurate kinetic analysis. However, under saturation conditions

(0.5 mM for methylmalonyl-CoA, 5 mM for other thioesters),
the relative product yields could be estimated at the end of the
incubation period. The molar ratios of products derived from
methylmalonyl-CoA, ethylmalonyl-CoA, propylmalonyl-CoA and
malonyl-CoA were 100:8:6:<0.1, respectively. Thus, although
this methymalonyl-CoA specific module can discriminate against
both smaller and bulkier substituents at theR-carbon, it appears
to have greater tolerance toward unnatural precursors that are
ordinarily not available in a cell.

In summary, theR. trifolii malonyl-CoA synthetase provides
an attractive route to expand the lexicon of precursors available
for polyketide biosynthesis. Parenthetically, we note that several
orthologs of this enzyme have recently been reported in the
genomic literature with approximately 30% sequence identity;16

these enzymes may have complementary substrate preferences
to the enzyme described here. Since PKS modules appear to have
modest tolerance toward some of these unnatural precursors,
coexpression of PKSs with slightly altered acyltransferase selec-
tivity and malonyl-CoA synthetase could yield polyketides with
unnatural functional groups.
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